Numerical analysis to evaluate ultimate flexural performance of precast concrete piles subjected to tensile or high compressive axial load.

Tokyo Institute of Technology Kono Laboratory THUSOO Shreya

Purpose of Research

AIM: To establish a reliable modeling technique to analyze flexural cyclic behavior of SC piles.

OBJECTIVE: To numerically analyze test piles using a fiber-based model to simulate moment-curvature relationships.

- predict behaviors beyond ultimate deformation capacity.
- simulate characteristics of hysteresis loop.

Material Model

For isotropic hardening in steel,

\[\sigma_{st} = a_3 \left(\frac{e_{max}}{e_y} - a_4 \right) \]

(a) Kent-Scott-Park model with linear tension softening for concrete.\n(b) Giuffré-Menegotto-Pinto model with isotropic strain hardening for steel.

Finite Element Model

6 SC piles were analyzed using a fiber section analysis with force based beam-column elements using OpenSees.

Conclusions

- Steel model **WITHOUT ISOTROPIC HARDENING** resulted in an understimation of maximum moment capacity, with an error of about 20%.
- Steel model **WITH ISOTROPIC HARDENING** in tension and compression, calibrated for SC_2 pile, resulted in reduction in overall error to about 6%.
- With proper adjustment of isotropic hardening parameters better estimations of moment capacity of piles can be achieved.